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Cosmic Spinor Fields and the Early Universe 
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The energy production through expansion of the universe is studied for the 
Dirac spinor field in all three types of Robertson-Walker universes. Only in the 
open case is the matter production unlimited (closed universe: limited; flat 
universe: impossible). The physical properties of the cosmological solutions to 
the Dirac equation over any RW background are studied in detail. 

I. INTRODUCTION 

In modern cosmology, the common belief is that our universe in its 
evolution was subject to two essentially different phases, namely the 
primeval phase and the subsequent standard phase in which we live today. 
Both phases are assumed to be separated by a certain phase transition, 
during which the exotic physics of the primeval era was changed into the 
usual form of physics as known today. As a natural consequence of this 
picture of the universe's history, the cosmic dynamics of the present 
standard phase is satisfactorily described by well-established theories (Kolb 
and Turner, 1990), such as relativistic thermodynamics or Einstein's theory 
of gravity based upon his famous field equation 

I 
8~ ~--s T~ (1.1) R~v - -~ RG~,v = 

However, it appears almost trivial to point out that this standard 
cosmology runs into serious difficulties when trying to clarify its own initial 
conditions, e.g., the questions (i) where does all the huge energy content of 
the present-day universe come from? (ii) what was the origin of the initial 
outward push for the expansion lasting up to the present day? (iii) why is 
the cosmological principle obeyed so accurately (on large scales)? The fact 
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that standard cosmology is completely unable to give a satisfying answer to 
such questions is readily realized by writing down the Einstein equations 
(1.1) for the typical cosmological situation of a Robertson-Walker uni- 
verse where the energy-momentum density Tuv of matter must have its 
"cosmological shape": 

Tuv = ~lgb~bv - ~ u v  (1.2) 

( ~ b ~  = O, Guv= ~ + bub~) 

Here, the energy density d /  and pressure ~ are assumed to be homoge- 
neous (cosmological principle) and therefore depend exclusively upon the 
cosmic time 0 according to Einstein's equation (1.1): 

d~  3 
d ( j [~3)  = _ ~  _ _  (l.3a) 
dO dO 

l d 2 ~  _4  Lp2 ( 1 ) 
~ dO-----T= ~ ~ +-~ M..[ (1.3b) 

(~  is the radius of the universe). 
Thus, during the standard phase where the energy density Jr', pressure 

~,  and expansion rate H = ~ / ~  are assumed to be always nonnegative, 
equations (1.3) say that both the energy ~ ,~3  in a comoving 3-cell of size 
~3 and the expansion rate H are always decreasing! Consequently, the 
standard cosmology is completely unable to explain the origin o f  the 
primordially high energy per 3-cell and how the expansion rate H achieved 
its primevally high value! 

In order to remedy these and other deficiencies of the standard 
cosmological model (e.g., horizon and flatness problems, etc.), it is very 
suggestive to resort to the hypothesis that the standard phase was preceded 
by some quantum era during which the matter energy was present in the 
form of a coherent quantum state ~ extending over the whole universe 
(being still incredibly tiny at that epoch). Clearly, such a hypothesis will 
gain credibility only through successfully solving (at least some of) the 
puzzles of the standard cosmology, as mentioned above. That this is in 
principle feasible has been demonstrated through the new paradigm of 
inflation (Guth, 1981; Blau and Guth, 1987; Abbott and Pi, 1986), where 
the global quantum state ~ refers to a real scalar field which, during the 
inflationary phase, is in its "false" vacuum state and obeys the equation of 
state 

= - ~ = const (1.4) 

Evidently, such an exotic equation of state can account for both the 
increase of energy in a 3-cell according to (1,3a) and the exponential 
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growth of the universe's size ~ according to (1.3b). In this way, the 
inflation model can successfully overcome several of the weak points of the 
standard cosmological model, and it is merely the precise nature of the 
phase transition from the inflationary into the standard phase which has 
caused some controversy and still must await its final clarification 
(Hawking, 1990; Penrose, 1989). 

Now we have arrived at the point of the present paper; if it is some 
particle field in its global quantum state which is responsible for all the 
exotic physics occurring in the prestandard epoch, we have to ask which of 
the known particle fields is the right candidate. Historically, the scalar field 
was preferred (Guth, 1981), because it emerged in the grand unified 
theories being studied intensively in connection with cosmological prob- 
lems. However, it seems meaningful to ask whether other particle fields can 
do the same job (or even better?). An alternative to the scalar field has 
recently been proposed in the form of the Dirac spinor field (Sorg, 1992a), 
because this is the most dominant particle field in nature and it would 
appear somewhat strange for this dominance not to have been present also 
during the prestandard phase! Indeed, it can be demonstrated (Sorg, 
1992b,c 1993; Mattes and Sorg, 1993; Ochs and Sorg, n.d.; Mattes et al., 
1993) that the spinor field is able to create energy ex nihilo in a nonsingular 
way (for vanishing radius ~ ~ 0 )  if it is interacting with gravity via the 
Einstein equation (1.1) (,,,~,-~ minimal coupling). However, there are sig- 
nificant differences from the inflation model: 

(i) Whereas the mechanism of inflation via a scalar field works in any 
type of universe (closed, flat, open), the energy production by a spinor field 
is effectively possible exclusively in an open universe (limited energy pro- 
duction in a closed universe and no production in a flat universe). 

(ii) Whereas in the inflation model, based upon the scalar field, energy 
is created during the exponential growth of radius ~ ,  the Dirac spinor field 
creates energy through oscillations in size ~.  

Such a "cosmic pumping" process may be preliminarily explained as 
follows (Mattes et al., 1993): The pressure ~ of the Dirac field ~b looks like 

~ (cos X)/~ and thus is negative only when the relative phase shift Z 
between the positive and negative energy components of @ are in the range 
7r/2 < Z < 3zc/2. Consequently, when this occurs, we must have a small 
radius M in order to get an effective energy production. But simultaneously 
the negative pressure ~ blows up the universe according to (l.3b) and thus 
spoils the effectiveness of energy production. As a consequence, the uni- 
verse has to pass several phases of minimal extension (bounces) in order to 
increase its energy content with every bounce up to the large value being 
presently observed. 
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In the present paper a better understanding of this "cosmic pumping" 
process is sought by studying in detail the physical properties of the 
cosmological solutions to the Dirac equation in all three types of Robert- 
son-Walker universes. We will examine the (pseudo) scalar density, the 
(axial) current, and the polarization. The Robertson-Walker geometry is 
arbitrarily prescribed and not determined from the Einstein equation (1.1), 
because this is possible exclusively in the open universe (Mattes and Sorg, 
1993; Mattes et al., 1993). Similarly as in the inflationary scenario, the 
precise nature of the phase transition into the standard phase must be left 
unclear in the present state of the theory. Since such a phase transition is 
expected to consist in the decay of the global quantum state into the 
decoherent wave functions of the individual particles (of the big bang 
plasma), it seems to us that one first has to solve the general problem of 
decoherence in quantum theory, before one can attack the problem of the 
cosmic phase transition! 

Our procedure is the following: 

1. First we obtain the solutions ~b to the Dirac equation of the 
"cosmological type," i.e., the corresponding energy-momentum density T~v 
must be of a form similar to (1.2) with homogeneous ~ and ~ (Section 2). 

2. Next we establish the dynamical equations for the physical densities 
of the spinor field by recasting the Dirac equation into a relativistic 
Schrfdinger equation (Section 3). 

3. Then we try to solve the puzzles of the standard cosmology, 
mentioned below (1.1), by discussing the specific properties of the spinor 
densities. We study matter production and the question of the cosmological 
principle in all three types of universe (Sections 4-6). 

4. We collect the results in a survey table (Section 7). 

2. EXACT COSMOLOGICAL SOLUTIONS 

Assuming that matter energy during the prestandard phase was 
present in some form of coherent quantum state ~b(x) extending over the 
whole universe and in agreement with the cosmological principle, we first 
have to look for the corresponding solutions of the Dirac equation 

ih .  ~ k  = Mc~b ( ~  = d~ + ~r (2.1) 

in anyone of the three types of FRW universe (closed, flat, open). This 
problem has already been solved (Sorg, 1992a, b, 1993; Mattes and Sorg, 
1993) and we merely collect the results as our point of departure for the 
subsequent investigations. 
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First, one recasts the Dirac equation (2.1) into the form of a "relativis- 
tic Schr6dinger equation" (Sorg, 1992a): 

i h c ~  ~ = gt+~,@ (2.2) 

and then one tries for the Hamiltonian ~ the "cosmological ansatz" (s)gf, 
(being compatible with the exact Robertson-Walker symmetry): 

1 3 
(hc) - ' '  <s) ,ug~, = 4 mv,,  + -~ ibm, { N  . 1 - N " ~ } 

+ (4b.b;. -G~;.){W. 1 + if ' .  e}. 7 ;" 

- i b ; { N  .Xuv + N.  *E~). } (2.3) 

(m  : = M c / h ) .  Observe that entering this ansatz are nothing else than the 
Clifford algebra elements {2+u, e, X~v, *E,v = - e  'Xu~ } as kinds of absolute 
(i.e., nondynamical) objects, as well as the Hubble flow b~, (bUbu = + 1) and 
finally the homogeneous scalar fields 

N = ( ' )N  - i (r)N 

A~ = <~'),N --  i (r)j~ 

W =  ('>W + i <c>W (2.4) 

if" = (')l~ + i <") I~ 

Clearly, the Hubble flow b u is the only possible vector field admitted by the 
Robertson-Walker symmetry. Denoting its orthogonal projector by @u~ 
(.'=Guy -bub~), we have that the cosmological form of any energy-momen- 
tum density T,~ which is consistent with the RW symmetry reads 

Tuv = .A/b~,b~ - ~ u ~  (2.5) 

where the energy density ~ '  and the pressure ~ must be homogeneous, 

~ , ,  < ~ '  = 0 (2.6a) 

~ u  c~u~ = 0 (2.6b) 

The conditions (2.5) and (2.6) will in general not be satisfied if we build up 
the energy-momentum density C~ for the Dirac spinor field 

1 
<~ = ~ q7(7 ~ �9 9f~ + 9((v" 7~,)~ (2.7) 

by means of the cosmological Hamiltonian (s)gu, (2.3), and by the corre- 
sponding solution ~b(x) of the Dirac equation (2.1). Although the cosmo- 
logical principle as expressed by equations (2.5), (2.6) can be strictly 
satisfied by imposing certain additional restrictions upon ~ > ~  [cf. (2.3)] 
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(Mattes and Sorg, 1993)--as would be necessary for solving the coupled 
Dirac-Einstein system (1 .1)+(2 .1)- -we need here merely the weaker 
condition 

Tuv = Jlbubv - ~ , ~  + Vvb u (2.8a) 

Vub ~' = 0 (2.8b) 

The spacelike vector field V u has to guarantee the validity of the work- 
energy theorem (1.3a). The reason is that we are mainly interested in the 
energy production on a given RW background; but we want this produc- 
tion to be homogeneous and isotropic in agreement with the cosmological 
principle [of. (2.6)]. 

After having specified the Hamiltonian ~'f~u in a first step, we have now 
to ensure the existence of the corresponding solution ~(x) of the Dirac 
equation (2.1) in a second step. As shown previously (Sorg, 1992a), the 
solutions of the relativistic Schr6dinger equation (2.2) fit also the Dirac 
equation (2.1) whenever the Hamilton g ,  obeys the following two condi- 
tions: 

i 
~,~'~gv - ~ 1 ~  + hc [ ~ ' '  ~g~] = ihc~,~ (2.9) 

i 
~ f f f~  - hc {(fft~ " ~ u )  _ (Mc2)2.1} = - ihcY,  Uv~,~ (2.10) 

Here ~u~ is the curvature of the connection ~ entering the covariant 
derivative ~u, (2.1); i.e., f f~  is the space-time curvature of our Robert- 
son-Walker universe. NOW, introducing the cosmological Hamiltonian 
es)~u, (2.3), into these conditions (2.9), (2.10) yields a system of constraints 
for those scalar fields (2.4). These constraints are partly of dynamical and 
partly of kinematical character. The dynamical part is (a dot denotes 
differentiation with respect to cosmic time 0) 

N m I ~ + 4 H W = - 3  ( W  + -i-~) 

W + 4Hff" = - 3Nff" 

 +n 7=0 

(~[ + t:1) -- N ( N  + H) = 16(W 2 + if,2) _ 4m W - b72 - - -  

(2.11a) 

(2.lib) 

(2.11c) 

dr 
~2 (2.1 ld) 

and the kinematical part is 

N .  /~=  0 (2.12a) 

. ~ ( W - 4 )  = 0 (2.12b) 
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~ ( N  + H) = 0 (2.12c) 

(N + H)2 = ---5- 4 W -  - 4fie2+ N 2 (2.12d) 

The interesting point here is that entering these constraints are, besides the 
Hubble expansion rate H, also the topological index a, which specifies the 
nature of the space-time foliation: a = +1: open universe; a =0:  flat 
universe; and e = - 1: closed universe. As a consequence, the existence and 
type of solutions to the Dirac equation will strongly depend upon this 
foliation index and we have to expect quite different physical properties of 
the matter field 0 according to which kind of topology for the universe we 
are considering! 

The integrability conditions (2.11), (2.12) are necessary but not suffi- 
cient; but, as can be shown easily, the missing supplement for sufficiency is 

[~e~, ~v] = 0 (2.13) 

where ~ is the anti-Hermitian part of the Hamiltonian: 

~'~,, = hc(~r, ,  + i ~ , )  

1 
JU~, = o,~ = ~ c  ( ~  + ; ' ~ )  (2.14) 

1 

Thus, introducing our cosmological ansatz (2.3) into the supplementary 
condition (2.13) readily yields the additional constraints 

r (,)fie _ r N . (c) W =  0 (2.15a) 

(t) W "  (r )~ = 0 (2.1 5b) 

(')_N �9 (') W - (r)N. (r) fie = 0 (2.15c) 

(r) fie. (~)~ = 0 (2.15d) 

(r)N. (r)~ = 0 (2.1 5e) 

((r)~)2 = ((~)N)Z (2.15f) 

((r)fie)z = (( , . )W)2 (2.15g) 

This is the desired result: any cosmo log i ca l  solution for the Dirac 
equation (2.1) on a given RW background is determined by equations 
(2.11), (2.12), and (2.15). Clearly, entering this are the characteristic 
features of such a RW geometry, namely the topological index a, the 
expansion rate H = ~ / ~ ,  and the radius of the universe ~ .  For the 
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subsequent discussion, let us begin with the simplest case: 37 # 0. As is 
readily deduced from the kinematical constraints (2.12), the only possibility 
for 37 is here 

O" ((r)2~ O) (2,16) (g) ~ _ ( ( " ) 3 7 ) ~  ~ - ~ t -  ~ 

i.e., this solution can exist only in a closed universe (a = - 1). Further, as 
is readily checked, the dynamical equations (2.11) and the supplementary 
conditions (2.15) are also satisfied by (2.16) with the remaining scalars 
being found as 

if" =~ 0 (2.17a) 

m 
-- (')W =~ 0 (2.17b) (')W ~ 4 '  

(')N ~ - H ,  (r)N ~ 0 (2.17c) 

Thus, our first solution is given by the Hamiltonian 

=~ 3 . 1 . t )  ~ ,  (-)~u =hc{mbu(b~"~.)-~ibu(H 1+-~ 
/ 

and is possible exclusively in a closed universe (a = -1 ) .  
For obtaining the remaining solutions, we return to the kinematical 

conditions (2.12)and take now the alternative case: 57 = 0. Here equations 
(2.12) are automatically satisfied, whereas the supplementary conditions 
(2.15) merely yield 

(')N =~ 0 (2.19) 

But this implies that the right-hand sides of both equations (2.11d) and 
(2.12d) must be real, i.e., 

t')W ~ 0 (2.20a) 

(')if'. t')ff/ ~ 0 (2.20b) 

and now the last supplementary condition (2.15) says that 

(')W =~ 0 (2.21) 

With these results, the last kinematical equation (2.12d) reduces to 

( 4 )  o ((C)N + H)2 + 4 ( ' ) W -  - 4((")ff')2 = -- 5 (2.22) 
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and does indeed admit all three topological cases a = 0, _+ 1. However, it is 
clear that the topological index cannot change during the expansion of  the 
universe and we can resort to the following parametrizations: 

cosh ~ �9 sin @ ~')N + H -  (2.23a) 

2((~) W - r e ' I \  4 J  = cosh ~ .~, cos@ ,a  = + l  (2.23b) 

2 (")if '= sinh ~ (2.23c) 

for a = + 1 or 

sinh ~ �9 sin @ (')N + H -  (2.24a) 

 oso , 

\ 41 

2 ( ' ) i f '=  +cosh_.~ (2.24c) - 

for ~ = - 1. Observe here that the flat case (~ = 0) is contained in the open 
case (2.23) in the limit of  an infinite universe ( ~  ~ oo) when the "timelike" 
hyperboloid shrinks to the "light cone." This light cone itself separates the 
"spacelike" hyperboloid (~ = - 1) from the timetike one (a = + 1) [further- 
more, the previously discussed situation ~ -=-- 0 (Sorg, 1992a,b, 1993; Mattes 
and Sorg, 1993) is also a particular subcase of  (2.23)]. The light-cone 
parametrization is (a = 0) 

(")N + H = 2 (")if" �9 sin@'] (2.25a) 
0 m ~" a 

(~ W - -- = (~) i f ' .  cos @ .J 4 (2.25b) 

Of  course, once the parameters ~ and @ are introduced one wants to 
deduce their dynamical equations from the Hamiltonian dynamics (2.11). 
This can be easily achieved by simply inserting the parametrizations 
(2.23)-(2.25) into the original dynamics (2.11). The results are, for the 
open case a = + 1, (2.23), 

= - 3  sinh ~ �9 sin @ ~ (2.26a) 

0 " = + 1  
cos @ 

(b = 3 ~ .  cosh ~ + 2m (2.26b) 
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for the closed case a = - 1 ,  (2.24), 

= - 3 c ~  t 

t7 
cos 

= - 3  ~ .  sinh ~ + 2m 

and for the flat case a = O, 

-- 2rn 

= - 1  

(2.27a) 

(2.27b) 

(2.28a) 
o ' = 0  

~")~ = - H  ~") if" - 6(~")ff') 2 sin ~ (2.28b) 

Obviously, the previous case (Sorg, 1992a, 1993) of  an open universe 
(a = + 1) is again contained in (2.26) as the special situation ~ ---0, � 9  Z. 
Finally, we write down the corresponding Hamiltonian ~ u  deduced from 
the general cosmological ansatz (2.3) by considering the conditions (2.19)-  
(2.21): 

+ i (')IZV(4bub;. - Gu~)~7;" 

with the parametrization (2.23) for the open case (a = + 1) and with the 
parametrization (2.24) for the closed case (a = - 1 ) .  

Thus, we have arrived at the two distinct solutions (2.18) and (2.29) [in 
connection with (2.24)] for the closed universe, one solution (2.29) [in 
connection with (2.23)] for the open universe, and one solution (2.29) [in 
conjunction with (2.25)] for the fiat universe. It is natural to expect that the 
physics becomes different for different Hamiltonians such as (2.18) versus 
(2.29), but that it will be similar for the same form of the Hamiltonian, 
even in topologically distinct universes (a = 0, + 1). Now we are going to 
check this supposition by considering the physical densities in some detail. 

3. PHYSICAL DENSITIES 

Since the wave function ~, itself is regarded as unobservable, it is 
meaningful to consider certain gauge-invariant objects built up by the 
unobservable ~k and understood as the proper physical quantities. Among 
these we first have the scalar densi ty  p 

P = ~ ' 0  (3.1) 
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Next the pseudo-density 

Then the current j ,  

j~, = qT. ?~ �9 ~O 

2167 

(3.2) 

(3.3) 

_ 1 P ~2 G~).~J ~j~ Su~ 4 p2 + ~2 [Lf~ - - ~ L ]  4 p 2 +  

All other densities carried by the spinor field ~9 can be composed of 
P, t~ ,L ,~  (and S~v), such as the spin density S.~;., 

S~,~,~. = q .  {E,~7;. + 7;Z~v }" ~ (3.7) 

which is the (Poincar6) dual of the axial current ~ ,  (3.4): 

1 x ~ 
Su~. = ~ e ,,~).j, (3.8) 

A further example is the energy-momentum density ~D)Tu~, (2.7), which, for 
instance, is found for the first solution c~),YC~,, (2.18), in its symmetrized 
form in terms of the basic densities (3.1)-(3.4) as 

1 

= Mc2pb~,b, ,  +_ 2-~ --~(bT;.)G,, (3.9) 

Observe that this is just the more general form (2.8a) rather than the 
simple cosmological form (2.5). For the sake of completeness, we also write 

FJ. = -J~f.  = p2 + ~z (3,6a) 

f ' j .  = 0 (3.6b) 

1 fi (3.6c) 

and its axial counterpart  j~, 

f~ = i~ .  ~7. ~O (?~ = ~ "7~) (3.4) 

And finally the polarization tensor S~,v, 

i 
S,,~, = ~ ~ .  Z,,v" 0 (3.5) 

Similarly to the operators involved (i.e., {1, e, 7,, ~Tu, Zuv }), the corre- 
sponding densities (3.1)-(3.5) are not quite independent, but are generally 
linked with each other by the following quadratic identities (Sorg, 1992c): 
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down the energy-momentum density for the second solution (2.29): 

W)T(uv) ~ ~W)T,v = h c { 4 ( ' ) W p b u b v - ( ( ' ) W - 4 ) P G ~ v  

- 8 ~")lYv'(bub ~ *S~v + b~b ~ *S~) t (3.10) 

Contrary to the result (3.9), the energy-momentum density (3.10) can 
be brought into the strict cosmological form (2.5) by putting <c)ff- =~ 0, but 
then the possibility of a closed universe (a = - 1 )  is eliminated; cf. (2.22). 
Due to this reason the coupled Dirac-Einstein equations exclude the closed 
universe (Mattes and Sorg, 1993)! It is directly evident from the result (3.9) 
[and also from (3.10) in the limiting case ~r)W =:" m/4] that the energy density 
~//to be extracted from the tensor Tu~ is closely related to the scalar density 
p through 

~r =_ T~bUb~~MeZp (~  ~ oo) (3.11) 

and therefore it is meaningful to look upon the quantity/a 

/.t := p ~  3 (3.12) 

quite generally as the "particle number," namely the matter energy con- 
tained in a comoving 3-cell of size ~ divided by the energy Me z of a single 
particle. The evolution of that particle number/~ during the expansion of the 
universe (~  ~ oo) is one of the main objects of interest in the next section. 

Returning once more to the question of the interrelationship between 
the wave function ~O and the physical densities generated by it, one may ask 
whether that wave function ~k can be parametrized by some other variables 
which have a more direct physical meaning than the four complex compo- 
nents of the Dirac spinor themselves. Clearly, the physical information 
inherent in those densities (to be considered as being observable in principle) 
must already be contained in the unobservable wave function itself! A closer 
inspection of this problem has recently revealed (Mattes and Sorg, 1993) 
that a Dirac spinor ~b can always be parametrized by the scalar density p, 
the "intrinsic velocity" x, the "spinor product" z ( < 1), a "phase angle" X, 
and an orthonormal tetrad ~ = { ~  ; ~ = 0 . . . . .  3} = {b,, g~, r~,, ~, } such 
that 

~176 ~ =g~t~ (3.13a) 

~ , ~ v  =G,~ (3.13b) 

i.e., 

b~,bu = _gu~,  . . . . .  + 1 

. . . . .  o 

(3.14a) 

(3.14b) 
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In terms of  these new "physical parameters" the basic densities are 
expressed as follows: 

= zp sinh 2x �9 sin Z (3.15a) 

j .  = p{cosh 2x �9 be, + sinh 2x[g~, �9 cos X + ~ ' (1 - z2) ~j2 sin X]} (3.15b) 

f~, = - p[z sinh 2x �9 cos X " b. + z cosh 2x �9 g.  + ( 1 - z 2) ~/2. )Tu] (3.15c) 

1 
S.~, = - ~  p sinh 2x[bt.g~ 1 �9 sin X - b[u$~ �9 (1 - z2) ~/2 cos ~] 

1 
+ ~ pb %;.,~ [z~," + cosh 2K �9 ( 1 - z2) 1/2 . ~ ]  (3.15d) 

There is a further physical density of great relevance: the polarization 
Mu~, defined through 

M~,~ = 2eh S.~ (3.16) 
M c  

Since this object characterizes both the electric and magnetic polarization 
of  matter, it becomes necessary to specify some distinguished observer 
relative to whom the separation into the electric and magnetic parts of the 
polarization may be performed. Clearly, as this referee we will take an 
observer who is comoving with the Hubble flow b u. Then the polarization 
M~v, (3.16), is split up into its electric and magnetic parts according to 

M~,~ = (~)Ml, b ~ - (~)M~b~ + ~u~;.~b;" ('~)M '~ (3.17) 

with the electric dipole density ~)M~ given by 

eh 
~ M .  = 2 M c  p sinh 2x[g u , sin Z + r~ . ( ! - z 2) ~/~ cos Z] (3.18) 

and its magnetic counterpart  (")Mu given by 

eh 
~ m ) M ~ , = 2 M c P [ Z ' ~ + ( 1 - z 2 ) ~ / 2 c o s h 2 x ' ) ~ ]  (3.19) 

Thus we have collected all the kinematical prerequisites in order to 
study in the next sections the physics in different universes (a = 0, _+_ 1) and 
ask questions like: What is the difference between the two closed universes 
[(2.18) and (2.29), a = - 1 ] ?  How does the polarization differ in the fiat 
universe [(2.29), a =0]  from that in the open universe [(2.29), a = + 1]? 
However, our main interest is in t he  question, which of the various 
universes is the most efficient one in order to produce as many "particles" 
/~ as possible? 
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Evidently, these questions can be answered by investigating the appro- 
priate densities, and it is not necessary to know the wave function ~ itself. 
Therefore one wants to have some method for directly computing the 
densities without resorting to the wave function. Such a method is available 
(Sorg, 1993) and is used extensively hereafter. It consists in writing down 
the first-order system for the densities, which may then be solved directly. 
To give a simple demonstration of this method, we consider the question of 
whether the energy density Jr' is homogeneous for the closed universe 
(2.18). First, the gradient of the scalar density p is found by means of the 
relativistic SchrSdinger equation (2.2) as 

A 8~,p = hc 

Consequently, this gradient points in the direction of the Hubble flow b e 
and therefore p mus t  be homogeneous: 

~ " v ( G P )  - 0 (3.21) 

But the homogeneity of p is not sufficient for the homogeneity of the 
energy density (~ )~  [cf. (3.9)]: 

(~ )Jr  = (~ )T~bUb ~ (3.22a) 

3 hc ~ 
= g c  2. p + ~ - ~ I  (3.22b) 

.~= b;':~ (3.22c) 

Obviously, the homogeneity of (-)dr additionally requires the homogeneity 
of the scalar Tin (3.22c), whose gradient is readily written down as 

G T  = z --- (V .b ) )~  + b~(V,,~) 

- H ~ , Z .  + b;~(V.~.) (3.23) 

Here, the derivative of the axial current ~ ,  (3.4), is computed in the 
following way: 

1 ( ~ ) ~ .  - (~ )a~ .  

= 2mpb~b~ - 3Hb~,~. - Hb;.~, 

1 b,,f o (3.24) 
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and consequently the desired gradient (3.23) becomes 

Off=  (2mfi - 3HT)b~, (3.25) 

which says that I is  indeed homogeneous. But with both scalars p of (3.20) 
and I o f  (3.25) being homogeneous, the energy density ~~L1r of (3.22) must 
be homogeneous, too, and we have our desired result. 

By a similar argument, one readily shows that the pressure ~ and the 
energy-density ~ '  are really homogeneous for both types of energy-momen- 
tum densities (3.9) and (3.10) and therefore the requirements (2.6) are 
satisfied by our solutions (2.18) and (2.29) to the Dirac equation. This is 
our method for analyzing the physical densities in the various universes, 
mentioned above, and we shall now present their peculiar features. 

4. COSMOLOGICAL PRINCIPLE AND POLARIZATION 

Now we have accumulated enough material to face the puzzle of the 
cosmological principle, whose origin is assumed to range back to the global 
quantum state preceding the standard phase. Here we want to adopt the 
viewpoint that this quantum state may be adequately described by our 
present solutions to the Dirac equation in curved space-time. The point of 
interest is that spin necessarily breaks the isotropy and thus the perfect 
cosmological principle must be spoiled. However, for the RW symmetry of 
space-time we need the cosmological principle only with respect to the 
energy-momentum density T~v emerging in the Einstein equations (1.1). 
The other densities, e.g., the pseudoscalar fi, may well be inhomogeneous. 
Thus, the question arises, which of the four solutions worked out so far 
comes closest to a homogeneous and isotropic density distribution for the 
early universe? Moreover, one wants to know whether there is some 
interplay of this question of highest symmetry with the topological type 
(a = 0, + 1) of the universe. Clearly, it is very tempting to speculate that 
some of those primeval inhomogeneities or anisotropies due to polarization 
have possibly survived the phase transition into the standard phase and 
eventually may be observable even today as certain structures in the matter 
or microwave distribution. 

4.1. Anisotropy and Polarization 

First, we consider the closed universe solution (2.18) whose energy- 
momentum density ~~)T~v is given by equation (3.9). It is obvious that this 
density does not satisfy the strict cosmological principle (1..2), but differs 
from that cosmological form by some polarization term ~~)~r~v : 

'~ 'r ,v = '~'L,.  + ~- qb,,,. (4.1) 
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Here, the polarization part is given by 

- 4  Mc2 = + - - ~  cosh 2to �9 b(u (re)My) (4.2b) 

but the cosmic part (Z)~v exhibits the desired cosmological form (see end 
of Section 3): 

(-)7~,,, = (~)~l[b~,b~ - (-~:~,~ (4.3a) 

(~)~[ = Mc2p .+ 3 "(~)~ (4.3b) 

1 T 
(-)g~ = +~ hc -~ (4.3c) 

Amazingly enough, the cosmic part itself is also source-free: 

V" (~)Lv = 0 (4.4) 

so that the work-energy theorem (1.3a) still applies, despite the presence of 
polarization. (Obviously, the polarization does not contribute to the energy 
density ~r162 nor to pressure 9~.) 

Thus, matter energy can be produced on account of the negative 
pressure, but the total amount of produced matter in the limit 9~ ~ m is 
strictly limited (see next section). For the moment, we are mainly interested 
in the  behavior of the polarization term because it apparently spoils the 
exactness of the cosmological principle. However, observe that the axial 
current .~ in the polarization part (4.2) contains the scalar density p 
according to equation (3.15c) and this density regulates the fading out of 
energy density (-)dr', (4.3b), and pressure (~)9 j, (4.3c), with increasing size 
9t of the universe. But due to the emergence of an additional inverse radius 
~ - ~ ,  the polarization term (4.2) dies out relative to the energy density 
(~)./r for increasing 9~, and the strict cosmological shape (1.2) with 9* = 0 
is approximated more and more. In this way, the cosmological principle 
may be valid to a high degree in that instant when the transition to the 
standard phase occurs, which then starts with the initial condition of 
homogeneity and isotropy of matter distribution. It seems to us that this 
mechanism provides a satisfactory explanation for the old puzzle of the 
origin of the cosmological principle, because it furthermore signals some 
possible generalizations: one may suppose that the arguments will remain 
qualitatively valid if one considers both a more unsymmetric set of solu- 
tions to the Dirac equation and a non-RW background. I n  such a situation, 
we will expect that the growing size of the universe damps the unsymmetric 
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constituents of the spinor energy-momentum density and leaves it in the 
cosmological form (1.2), which then enforces the RW symmetry of the 
space-time geometry via the Einstein equation (1.1). 

4.2. Decay of Polarization 

Is this damping into the RW symmetry a specific feature exclusively of 
the closed universe carrying the solution (2.18)? To answer this question, 
we have to consider the alternative solution ~w)~gj, of (2.29) with the 
corresponding energy-momentum density (')T,v, (3.10). This density may 
be split up in an analogous way as in the preceding case, (4.1), namely 

~ = (w)L~ + ~')~v (4.5) 

where the cosmic part c')7~.v has the desired form, 

~"').//r = 3hcp((~)W + ~2 ) (4.6b) 

' ~ ) ~ = h c p ( e ) W - 4 )  (4.6c) 

and the polarization part ('){bu,, is found as 

~')~.~ = - 8  (")ff'{b.b ~" *S~.~ + b~b ~" *S~. } (4.7a) 

= 8 Me2 
~")l~b~. ~ (4.7b) 

e 

The cosmic part (")ir'.~, (4.6a), has again vanishing source 

V" (')~.~ = 0 (4.8) 

(and therefore also the polarization term), so that the work-energy theorem 
(1.3a) also applies strictly in the present case! Thus, the polarization has no 
effect upon matter production. 

Now the interesting question in this case is again whether the polariza- 
tion part (4.7) vanishes more rapidly (for increasing radius ~ )  than the 
cosmic part (4.6) so that the damping mechanism into the RW symmetry 
can occur again. Obviously this would be true if one could show that the 
scalar (') fix decreases for ~ ---, o0, and if it decreases like ~ - ~, the damping 
to RW symmetry would be as strong as in the preceding case (4,2) for the 
closed universe. Now, the equation of motion for t,)ffx is deduced from 
(2.1 lb) as 

d (~t �9 ~")1~) = - 3(~")N + H)(~. �9 (~')IZ/) (4.9) 
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and this equation is most conveniently solved by use of the parametriza- 
tions (2.23)-(2.25), For the open case (2.23) we find for the variable 4(0) 

- T;+  (0) 
sinh ~ = sinh r (4.10a) 

1 + 2 cosh ~i," T+ (0) + T2+ (0) 

with the time function T+ (0) given by 

T+ (0) :=  tan  ~ in - - ~ -  

Similarly, for the closed case (2.24) we obtain 

1 + re_ (0) 
cosh ~ = cosh r 

1 + 2 sinh ~ , .  T_ (0) - T 2_ (0) 

where the time function T_ (0) is now given by 

T_ (0).'=tan[ 3 I ~ si__~ dO 1 
L z ,Join 

Finally, the flat case (2.25) directly yields for (')1~ 

,.~ . (c) i,~ ~--- ' ~ i n "  (~)/'~'i. (4.12a) 
1 + ~in'  (c) #in'  To(0) 

with the time function To: 

(4.10b) 

(4.11a) 

(4.1 lb) 

f f  sin ~d0  (4.12b) To(0).'= ,. 

These results clearly show that whenever the time functions T+, T_, To are 
of bounded variation for ~ ~ oo, the scalar (") if" vanishes like #2 - I, and 
consequently the polarization terms (w)~uv of (4.7) must die out as rapidly 
as in the former case (4.2)! Thus, we arrive at the result that the polariza- 
tion is damped out in all three types of RW universe (a = 0, + 1) and 
therefore there is no preference for one of these topologies. However, if one 
wants to insist on the strict cosmological principle (,,,.~-~ vanishing ~ruv), 
there is left only the open universe (a - + 1) (Mattes and Sorg, 1993). 

4.3. Polarization Catastrophe 

Concerning the primeval fate of the universe, there are certain critical 
points which could have led to its premature death. The first danger 
consists in an early recollapse (~  ~0 )  after a short lifetime [this problem 
is treated in Ochs and Sorg (1993)]. The second danger is an anisotropic 
collapse (mw-~ lower-dimensional collapse) which emerges in our present 
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context as a kind of polarization catastrophe ({~~ I~ ~ oo). In order to avoid 
this, the denominators on the right-hand sides of all three cases (4.10a), 
(4.11a), and (4.12a) must always remain nonzero, which imposes some 
restrictions upon the expansion law ~ = ~(0). For instance, in the simplest 
case (4.12a) we must require for all times 0 

ITo(0)] < I~in" (c) [/Vinl - I  (4.13) 

in order that a polarization catastrophe ((")l~= oo) be avoided. Similar 
conclusions can be drawn for T+ (0) from the other two situations (4.10a) 
and (4.11a). Thus, from the viewpoint of the anthropic principle, the 
polarization catastrophe acts as a sort of Darwinistic selection principle: if 
the primeval universe is not homogeneous and isotropic enough in order to 
sufficiently approximate the RW symmetry during its further expansion 
(~  ~ oo), it must undergo self-destruction. Observe, however, that this 
effect refers exclusively to the second type of solution (2.29); the first type 
(2.18) always excludes such a catastrophe. 

4.4. Almost  Exact  Cosmological  Principle 

The first type (2.18) is also interesting from another point of view: As 
was demonstrated through the arguments at the end of the preceding 
section, the scalars p, ~, I, T are strictly homogeneous for the solution 
(2.18). Thus, the general shape (3.15) of the densities says that the physical 
parameters z, K, Z must also be homogeneous. It is evident that this 
situation reaches to the cosmological principle as close as possible. It 
must be clear that the very phenomenon of spin must break isotropy 
necessarily, but homogeneity can be perfect, and this is achieved just by our 
solution (2.18). It is readily seen that the second kind (2.29) of our 
solutions cannot exhibit such a high degree of homogeneity. By means of 
the method mentioned above we find for the derivative of the intrinsic 
velocity 

- 6z ~"~ff" �9 sin X b~ (4.14) 

Thus, the intrinsic velocity K will in general neither be  homogeneous nor 
time independent, except in the special case of a flat universe (a = 0) with 
vanishing scalar field ("~'; cf. (2.25). 
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A similar result also holds for the spinor product z: 

sinh 2x .(t~,z)=~,(1-z2)l/2{(c")N+H). cos X - 2 ( ( ' )W-  4 )  �9 sin X } 

- r~u �9 z( 1 - z 2) 1/2 cosh 2x t((C)N + H) �9 sin X 

+2((r)W-4)'cosz}+2(")ff'(1-z2) '/2sinh2x "~v 

- 6 (*) # cosh 2x sin Z ( 1 - 22)b, (4.15) 

Here again, the physical parameter z cannot be homogeneous in an open or 
closed universe, [cf. (2.23) and (2.24)], but it can be homogeneous in the 
flat universe (2.25), namely in the special case of vanishing (c)ff,. 

However, the rapid phase angle X may well be homogeneous, provided 
(")I~ vanishes permanently: 

�9 coth 2x f((C)N + H) �9 sin (a~x) 

+ 2 ( ( r ) W - 4 ) . c o s x -  2 (c)# �9 sinh 2x} 

(1 - z :) 
sinh 2to {((~176 

+ 6  (~)W+-i- ~ b ~ - 6  z co th2~cosxb .  (4.16) 

Thus, for achieving homogeneity of X we merely have to require �9 = Z + 
~/2, in addition to (~ff"--0, and then we find the simplified dynamical 
equation for ~: 

3 cos ~ = 2m + (4.17) 
9~ 

in agreement with previous results (Sorg, 1993). (Here, the phase shift 
= n/2 has been absorbed into the rapid variable X.) 

Thus, we arrive at the result that the open and closed universes 
carrying the solution (2.29) are less homogeneous than the closed universe 
(2.18); and it is only the fiat universe within the set (2.29) which can 
achieve the high degree of homogeneity like that of the closed type (2.18)! 

4.5 .  R o t a t i o n  o f  the Tr iad  

As is evident from the physical densities (3.15), the orthonormal triad 
{~i~ } = {gv, rT~, ~-u } defines a reference frame relative to which the densities 
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are oscillating, and the corresponding frequency is approximately on the 
Compton scale (co,. ~ 2me = 2Mc2/h); of. (4.17) for ~ ~,m. However, if 
one is interested in the effective time behavior of the densities relative to a 
comoving observer, one must also take account of the rotation of the triad 
relative to such an observer. As we shall readily see, the triad rotation is 
also governed by the scalar ~'~ IT/and therefore the rotation dies out with 
this scalar field for ~ ~ o o  in a similar way as the anisotropy and 
inhomogeneity effects mentioned above. In order to see this clearly, we take 
the time derivative b~'V, of the triad vectors ~ and find by means of our 
method described above 

buV~g,.v = ~jvcSJ,. (4.18) 

or if we prefer to work with the rotation 3-vector 03i (in place of the 
rotation matrix 03~,) 

b"V.~,~ = e/k03j~k~ (4.19) 

Here, the rotation vector (matrix) is given through 

0312 o3 3 --6~')1~ ( l - - z2 )  '/2 = = �9 coth 2~: �9 cos ;( (4.20a) 
z 

0323 =03~ = _6(c)ff  , cos;( 
sinh 2x (4.20b) 

a331 =032= -6~")ff  "" (1 - z 2 )  I/2 sin;( 
sinh 2x (4.20c) 

Observe that in the general case, neither of the scalars x, ;(, z is homoge- 
neous [(4.14)-(4.16)] and consequently the rotation vector {035} is both 
space and time dependent. Clearly, this result yields a very complicated 
kinematical behavior of  the currents j~,,.~ and the polarization S~v. For this 
reason we shall henceforth restrict ourselves to the case ~c)if- = 0 and shall 
now work out under this presumption the different physics occurring in the 
three different universes (a = 0, + 1). 

5. C L O S E D  U N I V E R S E  ( o  ----- --  1), T Y P E  (2.18)  

It is clear that the simplest universe is given by the case (2.18) because 
there are no intrinsic degrees of freedom for matter, such as the variables 

and ;( in the more complicated situation (2.29). First, we want to see how 
the orthonormal triad ~ r  (i = 1, 2, 3) [cf. (3.13-(3.14)] looks in the present 
case because this triad essentially determines the polarization M~,v, the flow 
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of  the current j'~, etc. Through the method described at the end of Section 
3, we readily find the following field equations for the triad: 

or in compact notation 

"v& = _+~ [,~ - L,~.]  (5.1a) 

(5,1b) 

(5.1c) 

differentiating once more across the 3-distribution (V, .'= N~, "V~): 

. . . . .  ( 1 )  
[V/./V v -- V v V/~]~i2 = [~ilt~Rv - ~iv~).ll] 

Comparing this to the identity 
r r t'h t'3 6317 

[Vp V v -- V v V/t]~i3 ' ~- -- R 2lzv~itr 

(5.4) 

(5.5) 

where ~ is the Riemannian of the integral surface of the 3-distribution, 
readily yields for that curvature tensor 

R.a,. = ~ [Na,~',, - &~,~x'] (5.6) 

which is just the expected result for a homogeneous isotropic 3-surface 
(observe ~u,  = ~"u~;~) ! Next, notice that any one of the triad vectors (5.2) 
is parallel transported along its own integral curve, e.g., 

gv(V~g~.) = 0, etc. (5.7) 

but nevertheless the triad is unable to establish a 3-coordinate system 
because the Frobenius integrability condition is not satisfied: 

[vd~.- v~v]  § [#d~. - tT~g,l (5.8) 

"Vvg;~. = ~j~ re,  v (5 .2)  

with the rotation matrix ~ given by 

= + 1  e~.k~k v (5.3) ge, v 

The derivative "V occurring here is the surface derivative (Sorg, 1993), i.e. 
"V = ~ o V o ~ ,  which is induced by the original derivative V on the 
3-distribution formed by the triad field {go, ~ ,  g~ }" 

The triad (5.1) has some interesting properties to be discussed shortly, 
but first let us check the consistency of their field equations (5.1), (5.2) by 
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(with an arbitrary l-form /~v). On the other hand, the triad is indeed a 
global 3-frame over the 3-dimensional sphere S 3, as may be checked in the 
following way: forming some subframe ~ = {~.; a = l, 2}, e.g., el~ = )T~, 
e~. = g. ,  and transporting this 2-frame parallel along the third triad vector 
g~ yields 

g (V~e~) = ~bf~. (5.9) 

with the subrotation matrix fl being found as the generator of  the rotation 
subgroup 6e(9(2): 

. ,(0 -'0) ~ ~  = _+~ (5.10) 

Thus the solution of  (5.9) for the 2-frame ~. in terms of  the proper length 
s along the geodesic line with tangent vector gv is 

~(s) = ~(0) " exp[sf~] 

with the 6ed~(2) group element being given by 

exp[sfi] = cos +_ sin s . -- 

(5.11) 

(5.12) 

Thus following that geodesic Aine around the whole universe, the S~(9(2) 
group element (5.12) becomes at the end (s = 2n90 of  the circumference 

exp[2nRf~] = 1 (5.13) 

and the 2-frame consistently ends up with its starting configuration at 
s - 0 .  

After the triad ~, (3.13)-(3.14), is known, a glimpse at the physical 
densities (3.15) shows that we have to compute the equations of  motion for 
the physical parameters z, x, and X. As is easily verified, the first scalar is 
very simple, namely 

z -- 1 (5.14) 

whereas the other two obey a coupled first-order system: 

, cos Z 
b~'Oj, Z ~ Z =~2m _+ 3 ~ sinh 2x (5.15a) 

3 cosh 2x �9 sin 
= •  ~ (5.15b) 

From this result we conclude that the angle X increases roughly in the order 
of  magnitude of  the first term on the right-hand side of  (5.15a), which gives 
a certain oscillatory character to the physical densities. For instance, the 
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current ju of (3.15b) is oscillating linearly 

Ju = p{cosh 21c �9 b u + sinh 2~c �9 cos X "gu} (5.16) 

which is a manifestation of the we!l-known Schrrdinger trembling (Mattes 
and Sorg, 1993). Furthermore, the dipole densities (3.18)+(3.19) are 
found as 

eh (e)mu = 2 M e P  sinh 2x �9 sin X gu (5.17a) 

eh 
("~  = 2Mc  pg'u (5.17b) 

and clearly exhibit the qualitatively quite different character of both 
densities: whereas the electric component (5.17a) is always rapidly oscillat- 
ing, the magnetic counterpart (5.17b) does not contain any rapidly varying 
constituent (whenever the universe has become large enough)! Observe 
here that the result (3.20) says for this large-size limit 

/J ~ - 3 n p  (5.18) 

i.e., the scalar density drops down softly with the radius ~ as 

const 
�9 P"~ ~r (5.19) 

This implies that any comoving 3-cell carries a Constant magnetic polariza- 
tion in the direction of gu ["'~'~ longitudinal polarization; cf. (5.16)]! 

However, the most interesting feature of such a universe is its energy 
production via the pumping mechanism (1,3a). As may be read off from 
the energy-density (~)~r in (3.22), the matter energy in a comoving 3-cell is 
measured adequately by the "particle number" /~, (3.12), in the limit of 
infinite size (~  ~ ~ )  of the universe. Therefore it is meaningful to set up an 
equation of motion for the variable /~, which is readily deduced from 
equation (3.20) as 

/i = -T- 3 ~ (5.20) 

where/~ has been defined analogously to the particle number/~: 

:=/~3 (5.21) 

But since/~ couples to ki, we have to establish also the equation of motion 
for the latter variable, which, however, is readily obtained by the same 
technique and is found as 

/] = +3 ~ - 2m~7 (5.22) 
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with the scalar ~ defined as 

~ ,=T~ 3 (5.23) 

[for 7 see (3.22c)]. Unfortunately, the second variable/~ couples now to a 
third scalar ~, and we have also to add the equation of  motion for the latter 
one in order to close our system: 

r = 2m/i (5.24) 

But now we have the complete system (5.20), (5.22), (5.24) and thus are 
well prepared to discuss the corresponding energy production, which is 
regulated by the conservation law 

d 
d---0 {#z +/~z + ~72} = 0 (5.25) 

to be deduced immediately from that system. This important result says that 
the particle number # is strictly bounded, independently of  the specific way 
of expansion of  the universe. Thus, it is impossible to generate an appreciable 
amount of  matter by cosmic pumping in the closed universe of  the type (2.18). 

6. FLAT UNIVERSE,  6 = 0 

This universe carries a very simple physics, because with the constraints 
(2.25) and vanishing scalar (")I~ we arrive at 

(C)N + H = 0 (6.1a) 

m 
(r) w ~ -  - -  (6.1b) 

4 

so that the Hamiltonian (w)g, in (2.29) is simplified into 

( , . )~  ~ (.);,uf~ =Mc2bu(b~7;.)-ihcH(~b~. l -  b~Zu;.) (6.2) 

As a consequence, the energy-momentum density (')T,~, (3.10), adopts a 
very simple form, namely 

(W)T~v ~ (*)Tuv = Mc2pbub~ (6.3) 

which says that the pressure ~ must always vanish in a flat universe! But 
in this case, there is no energy production via the mechanism (1.3a) and the 
matter energy in any comoving 3-cell must be constant? Thus, in a flat 
universe there never occurs homogeneous matter production: 

/~ ~ /~. = const (6.4) 

contrary to the closed universe [cf. (5.20)]? 
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Through this result, one gets the impression that the flat universe is the 
most boring one of all three types. Indeed, this supposition is verified 
readily by writing down the field equations for the currents according to 
the method described above [cf. (3.20)]: 

V u j  v = 8mb~,b~'S~.v - 3 n b u j  ~ - a [ j u b  v - G~,v(b~j~)] (6.5a) 

v u f ~  = 2 m b u b ~  - 3 H b u . ~  - H [ b v . ~  - G,v(b~.)] (6.5b) 

Introducing here the densities (3,15), one arrives at the result that the triad 
is covariantly constant: 

" V , ~  = " V u ~ v  = "VuT. ~ =- 0 ,  (6.6) 

Further, the spinor product z and the intrinsic velocity x are both space- 
time independent, and finally the rapid phase angle X obeys the very simple 
law 

= 2m (6.7) 

as opposed to the case of the closed universe [cf. (5.15a)]. Clearly, the flat 
space-time (a = 0, H = 0) is a subcase hereof with the scalar density p 
becoming space-time independent. However, it must be remarked that the 
flat universe is interesting insofar as it is the only case in which the 
Schr6dinger trembling motion. (Mattes and Sorg, 1993) can be suppressed, 
i.e., x = 0, which implies 

.~  = pb~, (6.8) 

and the Dirac current becomes proportional to the Hubble flow. Observe 
here that the form (6.8) for the current is the only possible one in order to 
obey the exact cosmological principle. Therefore, if one likes the argument 
that the universe must have been born in the highest symmetric state and 
was subsequently filled with Dirac matter through cosmic pumping, then 
our universe must be flat (Sorg, 1992b). 

7. OPEN UNIVERSE, o = + 1 

For the sake of comparison, we briefly discuss here the results for the 
open universe (Ochs and Sorg, 1994; Mattes e t  al . ,  1993), which is the most 
interesting one with respect to matter production. Indeed, the equation of 
motion for the "particle number" # is (for (c)ff, = 0) 

sin X 
/i = 3((")N+ H)/z = 3 ~ / ~  (7.1) 

Actually, the equation of motion (7.1) does not put any limit upon the 
"particle number" #; but as explained in connection with the work-energy 
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theorem (1.3a), the energy production can effectively take place only as 
long as the pressure ~ is sufficiently negative, whereas the energy-momen- 
tum density (W)Tuv, (3.10), does admit this only for a small enough radius 

and for rt/2 < X < 3zc/2: 

,) m 

= hcp cos X (7.2) 
2~ 

Thus, a rapidly growing universe (~  -.  oo) soon stops a further increase of 
the "particle number" #, which is also easily recognized from its dynamical 
equation (7.1). Therefore, if one wants to have a further increase in energy, 
one must let the universe recollapse to such a small radius ~ and simulta- 
neously Z must be just in the favorable phase interval mentioned above so 
that ~ can experience a further increase[ Such a matching of radius ~ and 
the phase angle Z, obeying [cf. (4.17)] 

cos ;~ 
= 3 ~ + 2m (7.3) 

is possible either by considering the coupled Dirac-Einstein equations with 
a negative cosmological constant (Mattes et aL, 1993) or by arbitrarily 
imposing a convenient time dependence of the radius ~ = ~(0). As a 
special example of the latter method we choose (putting r = m~, t = mO, 

= dr/dt) 

r ( t )=  t { l - r . I 1 -  tanh(t i- ~ ) ]  sin2(~)} (7.4) 

(see Fig. 1). By optimizing here the parameters r . ,  z~, r= we can get particle 
numbers as large as we want (Fig. 2). 

Apart from its capability of unlimited energy production, the open 
universe is interesting also in some other respects. First of all, observe that 
some of the scalars, homogeneous in the closed and fiat universes 
(a = 0 , - 1 ) ,  must now be inhomogeneous in the open case (a = +1). 
Clearly, the scalar density p is still homogeneous: 

(sin Z t d~,p = 3 (̀ .) Npb~, = a p ~ - -  - n ~ b .  (7.5) 

[substitute o,,)~,, (2.29), with <')I~=O for the general ~ ,  in equation 
(3.20)!], but if we look at the "charge density" I = b~j~ = p cosh 2~ we find 
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Fig, I. Oscillating radius of the universe. By choosing the period z 2 so that the phase 
condition n/2 < X < 3~/2 is matched optimally, one can obtain an unlimited particle number 
p. After the end of the oscillations (t g 200), a phase transition is assumed to occur, after 
which the universe follows the standard expansion law (parameters: r ,  = 0.49; z I = 4 x lff'; 
% = 4). 

by use o f  the cur ren t  der ivat ive  

i 
V~j~ = hc ~ "  [(~)3r �9 y, - ~ '  (w)3cta~,] " ~b 

- - 8 ( ( r ) W - - 4 ) S u v  + 3  (~)Nb~,jv 

+ 32 (~)Wbub~S,~v + (C)N{jub, - G~(baj~)  } (7.6) 

a n d  o f  the  H u b b l e  flow 

V~b~ = H~uv (7.7) 

tha t  the charge  dens i ty  is indeed inhomogeneous :  

m v 
~vu a , I  = ((")N + H)~Sv, jv-8~(r)W---4)b S~v (7.8) 

However ,  the t ime dependence  o f  I is found  as  

b ~ d~I = ] = 3 (~  (7.9) 
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Fig. 2. Unlimited matter production. For the hypothetical expansion law (7.4), solutions 
exist for the Dirac system (7.1), (7.3) with an arbitrarily large particle number /~ (here 

~ l0 z4) (lower curve). The matter production occurs only during a bounce (-~,* minimal 
radius). Through the hypothetical phase transition, the huge matter energy is assumed to be 
converted into ordinary particles (~ ~ 0) and the standard expansion begins (initial condi- 
tions for t -~0;/a ~ t 3, ~( ~ ~/2 + t/2). If the polarization effect is included (~ ~ 0), the matter 
production is even more violent (upper curve, # ~ 1025). 

and thus, though  spatially inhomogeneous ,  the local ratio o f  charge density 
I and scalar density p is time independent  [cf. (7.5)]. As a consequence,  we 
conclude that  the intrinsic velocity K is inhomogeneous  here, in contrast  to 
the closed and flat cases, and a closer inspection indeed yields (Sorg, 

1993) 

1 
= ~ r  (7.10) 

where r is the radial coordinate  o f  the well-known parametr izat ion o f  the 
R o b e r t s o n - W a i k e r  line element (Misner  et al., 1973) 

dsZ=dO2-~t2{dr2 +sinhZr(d`92 +sin2 `9dq~2)} (7.11) 

In a similar way, one shows that  the spinor p roduc t  z is also inhomo-  
geneous 

z = cos ,9 (7.12) 

and it remains to look for  the triad {gl}. Since it is o r thogona l  to the 
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Hubble flow b,, just as the orthonormalized coordinate triad {r,, ~ ,  ~0~ } 

ru = ~(0,r)  (7.13a) 

~ = ~ sinh r (au~ q) (7.13b) 

~o~ = ~ sinh r sin ~9 (~3~ ~0) (7.13c) 

both must be related to each other by an (9(3) rotation, and indeed one 
finds 

g ~ ,  - - r u (7.14a) 

;~ = ~ (7.14b) 

~u - q~ (7.14c) 

These kinematical properties of the solution to the Dirac equation in an 
open RW universe then imply dipole densities of the following form: 

eh 
~e)M~, = - - - p  sinhr  {sin x �9 r~, + s i n 0  -cos Z �9 q~} (7.15a) 

2Mc  

eh 
~")M~- p{cos ~9 .r~, - c o s h  r" sin 8 . 0 ~  } (7.15b) 

2 M e  

Thus, the electric dipole density exhibits here an elliptical polarization in 
place of the simple linear polarization in a closed universe (5.17a). 

8. DISCUSSION 

The preceding results clearly demonstrate that any one of the three 
RW universes a = 0, +__ 1 carries a rather distinct physics and it is only the 
open universe which is well suited for the process of cosmic pumping. 
Furthermore, the latter universe is also capable of "self-pumping," i.e., one 
does not need to prescribe an oscillating radius ~(0) by hand, but one can 
let these oscillations be practiced by coupling general relativity to the Dirac 
matter field. By choosing suitable initial conditions, one can indeed obtain 
solutions of the coupled Dirac-Einstein system with ever-increasing energy 
density through continuous self-pumping (Mattes et al., 1993). Our results 
are collected in Table I (here ~")I~ = 0). 
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